

DECLARATION OF PERFORMANCE

DoP Nr.: Sikla-1.3-101_en

Unique identification code of product-type: Screwbolt TSM

Intended use/es: Mechanical fastener for use in concrete,

see Annex B

Manufacturer: Sikla Holding GmbH

Kornstraße 4

4614 Marchtrenk - Österreich

System/s of AVCP: 1

European Assessment Document: EAD 330232-01-0601

European Technical Assessment: ETA-16/0655, 02.12.2021

Technical Assessment Body: DIBt, Berlin

Notified body/ies: NB 2873 – Technische Universität Darmstadt

Declared performance/s:

Essential characteristics	Performance
Mechanical resistance and stability (BWR 1)	
Characteristic resistance to tension load (static and quasi-static loading) Method A	Annex B2, C1
Characteristic resistance to shear load (static and quasi-static loading)	Annex C1
Displacements	Annex C6
Durability	Annex B1
Characteristic resistance and displacements for seismic performance category C1 and C2	Annex C2-C4. C7
Safety in case of fire (BWR 2)	
Reaction to fire	Class A1
Resistance to fire	Annex C5

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Günter Brugger Achim Münch

(Head of Management Systems)

Villingen-Schwenningen 12.10.2022

(Head of IPRM)

The original of this declaration of performance was written in German. In the event of deviations in the translation, the German version shall be valid.

Specifications of Intended use

Screw	bolt TSM	TS	M 6	Т	SM 8	3	T	SM 1	0	Т	SM 1	2	T	SM 1	4
Nomir	nal embedment depth h _{nom} [mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
	Static or quasi-static loading							✓							
t to	Fire exposure							✓	Œ.						
subject to	Seismic action C1		sion lo ar load					(, SU (, SU					K, S	T, IM	7
ges	(zinc plated, A4, HCR)	,	/	1)	✓	✓	1)	✓	1)	✓	1)	✓
Anchorages	Seismic action C2 (zinc plated)	w	sion lo th fille thout	d an	nular	gap	: E								Р
		1)	1)	1	1)	1)	✓	1	1)	✓	1)	✓
_	Cracked or uncracked concrete							✓	5						
Base material	Reinforced or unreinforced concrete (without fibres) acc. to EN 206:2013+A1:2016							✓	В						
Base	Strength classes according to EN 206:2013+A1:2016, C20/25 to C50/60							✓	4						

¹⁾ no performance assessed

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions: all materials
- For all other conditions corresponding to corrosion resistance classes CRC according to EN 1993-1-4:2006 +A1:2015:
 - stainless steel A4, according to Annex A3, Table A3: CRC III
 - high corrosion resistant steel HCR, according to Annex A3, Table A3: CRC V

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
 reinforcement or to supports, etc.)
- Design method of anchorages according to EN 1992-4:2018 (if necessary in conection with EOTA Technical Report TR 055, version February 2018)

Installation:

- Making of drill hole by hammer drilling or vacuum drill bit.
 When using a vacuum drill bit no drill hole cleaning is required.
- Anchor installation carried out by appropriately qualified personal and under the responsibility of the person responsible for technical matters on site.
- After installation further turning of the anchor is not possible. The head of the anchor is supported on the fixture and is not damaged.
- The borehole may be filled with the Injection Systems VME or VME plus.
- Adjustment according to Annex B5 (except for anchorages with filled borehole and anchorages subject to seismic action).

Screwbolt TSM	
Intended use Specifications	Annex B1

²⁾ Version SK, TSM 8 and TSM 10

Table B1: Installation parameters

Anchor size			TS	М 6	7	rsm a	8	Т	SM 1	0	Т	SM 1	2	Т	SM 1	4
Nominal embedment depth	h _{nom}	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Nominal drill bit diameter	d ₀	[mm]	(6		8			10			12			14	
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,	40		8,45	i i		10,45	5	9	12,50)		14,50)
Effective anchorage depth	h _{ef}	[mm]	31	44	35	43	52	43	60	68	50	67	80	58	79	92
Depth of drill hole	h₀≥	[mm]	45	60	55	65	75	65	85	95	75	95	110	85	110	125
Diameter of clearance hole in the fixture	d _f ≤	[mm]		3		12			14			16			18	
Max. installation torque for screws with metric connection thread	T _{inst} ≤	[Nm]	1	0		20			40			60			80	
Tangential impact screw driver 1)	T _{imp,max}	[Nm]	16	60		300			400			650			650	

¹⁾ Installation with tangential impact screw driver, with maximum power output T_{imp,max} acc. to manufacturer's instructions is possible

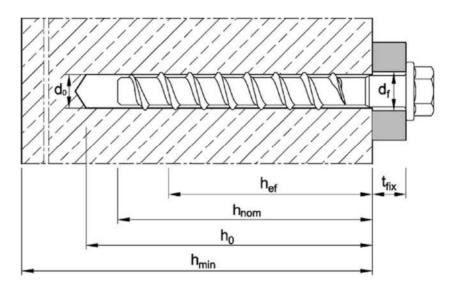


Table B2: Minimum thickness of member, minimum edge distance and minimum spacing

Anchor size				TSM 6		TSM 8			TSM 10			TSM 12			TSM 14		
Nominal embedment depth	h _{nom}	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115	
Minimum thickness of member	h _{min}	[mm]	10	00	10	00	120	100	13	80	120	130	150	130	150	170	
Minimum spacing	Smin	[mm]	4	0	40	5	0		50		5	0	70	50	7	0	
Minimum edge distance	Cmin	[mm]	4	0	40	5	0		50		5	0	70	50	7	0	

Screwbolt TSM	
Intended use Installation parameters / Minimum thickness of concrete member, minimum spacing and edge distance	Annex B2

Installation instructions Drill hole preparation and cleaning Drill hole perpendicular to concrete surface. 1 Using a vacuum drill, continue with step 3. Blow out dust or alternatively vacuum clean down to the bottom of 2 the hole. Installation Screwbolt **T**inst Screw in, e.g. with tangential impact screw driver or torque wrench. 3 After installation, the head of the anchor is supported on the fixture 4 and must be undamaged.

Annex B3

Screwbolt TSM

Installation instructions

Intended use

Installation instructions - Adjustment 1. Adjustment max. 10mm 5 Screw may be untightened maximum 10mm. T_{inst} After adjustment, screw in the concrete screw with tangential impact screw 6 driver or torque wrench. After installation, the head of the anchor is supported on the fixture must be 7 undamaged. ≥ hnom 2. Adjustment max. 10mm 8 Screw may be untightened maximum 10mm. max. 10mm T_{inst} After adjustment, screw in the concrete screw with tangential impact screw 9 driver or torque wrench. After installation, the head of the anchor is supported on the fixture and must 10 be undamaged. ≥ hnom Note: The fastener may be adjusted max. 2x. The fastener must not be screwed back by more than 10mm in each case. The relining carried out during adjustment must not exceed 10 mm in total. Nominal embedment depth h_{nom} must still be maintained after the adjustment. Screwbolt TSM Annex B4 Intended use Installation instructions - Adjustment

Installation instructions - filling of annular gap Drill hole preparation and cleaning Drill hole perpendicular to concrete surface. 1 Using a vacuum drill, continue with step 3. 2 Blow out dust or alternatively vacuum clean down to the bottom of the hole. Installation Screwbolt with filling washer Fit the filling washer to the Screwbolt. 3 The thickness of the filling washer must be taken into account with tfix. **T**inst 4 Screw in, e.g. with tangential impact screw driver or torque wrench. Fill the annular gap between Screwbolt and fixture with mortar (compressive strength ≥ 40 N/mm², e.g. Injection mortar VMH, VMZ or 5 VMU plus). Use enclosed reducing adapter. Observe information on processing of the mortar! The annular gap is completely filled, when excess mortar seeps out. For seismic loading, the application with and without filling of annular gap is permitted (Annex C3-C4).

Intended use Installation instructions with filling of annular gap Annex B5

Anchor size			TS	M 6	1	SM	В	T	SM 1	0	T	SM 1	2	Т	SM 14
Nominal embedment depth	h _{nom}	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100 11
Installation factor	γinst	[-]							1,	,0		8 48			A. A.
Tension load															
Steel failure															
Characteristic resistance	N _{Rk,s}	[kN]	1	4		27			45			67			94
Partial factor	γMs,N	[-]							1,	,5					
Pull-out			_												
Characteristic cracked	$N_{Rk,p}$	[kN]	2,0	4,0	5,0	9,0	12	9,0	≥ N ⁰ i	Rk,c 1)	12		200		\$ 555°
resistance in concrete C20/25 uncracked	N _{Rk,p}		4,0	9,0	7,5	12	16	12	20	26	16	≥ N ⁰ F	Rk,c 1)	≥	N ⁰ Rk,c ¹⁾
	тчнк,р	[KIV]	4,0	3,0	7,5	12	10	12	20		10		-		
Increasing factor for $N_{Rk,p}$ $N_{Rk,p} = \psi_c \cdot N_{Rk,p}$ (C20/25)	Ψc	[-]							$\left(\frac{f_{ck}}{20}\right)$	-)0,5					
Concrete cone failure															
Effective anchorage depth		[mm]	31	44	35	43	52	43	60	68	50	67	80	58	79 92
Spacing	Scr,N	[mm]							31	200					
Edge distance		[mm]	_						_	h _{ef}					
Factor k_1 $\frac{\text{cracked}}{\text{uncracked}} \frac{k_{\text{cr,N}}}{\text{uncracked}} \begin{bmatrix} -1 \\ k_{\text{ucr,N}} \end{bmatrix}$									7,	000					
	K _{ucr,N}	[-]							11	,0					
Splitting Characteristic resistance	N ⁰ Rk,sp	[kN]	<u> </u>					min [Ne	; N ⁰ R	1) 1				
		[mm]	120	160	120	140				210	-	210	240	190	240 28
Spacing Edge distance				80	60	70	75	70	90				10-1 - 10-10-10-10-10-10-10-10-10-10-10-10-10-1	90	
Edge distance	Ccr,sp	[mm]	60	80	60	70	/5	70	90	105	75	105	120	90	120 14
Shear load															
Steel failure without lever arm	-	<i>5</i> 1 5 13	_	•				00 =		•	00 =		•		
Characteristic resistance	V ⁰ Rk,s	The second of	7	,0	13	,5	17,0	22,5	3		33,5	42	,0		56,0
Partial factor	γMs,V	[-]							1,2						
Ductility factor	k ₇	[-]							0,	,8					
Steel failure with lever arm					-21						18				
Characteristic bending resistance	M ⁰ Rk.s	[Nm]	10),9		26			56			113			185
Concrete pry-out failure															
Pry-out factor	k ₈	[-]	1.	,0		1,0		1,0	2,	0	1,0	2,	0	1,0	2,0
Concrete edge failure															
Effective length of anchor	$I_f = h_{\text{ef}}$	[mm]	31	44	35	43	52	43	60	68	50	67	80	58	79 9
Outside diameter of anchor	dnom	[mm]	6	6		8			10	AC		12			14
No _{Rk,c} according to EN 1992-4:2018	3														
Screwbolt TSM															
Performance													Δ	nne	x C1

Γ

Table C2: Characteristic values for seismic loading, performance category C1

Anchor size			TS	M 6	TSM 8	TSM	<i>l</i> 10	TSM 12	TSM 14
Nominal embedment depth	h _{nom}	[mm]	40	55	65	55	85	100	115
Installation factor	γinst	[-]				1	,0		
Tension load	Version: B	I, B, SI	JTX	, SU, S	S, SK, LK, LI	P, BSK	, ST, II	М	
Steel failure			151			-20			
Characteristic resistance	N _{Rk,s,C1}	[kN]	1	4	27	4	5	67	94
Partial factor	γMs	[-]				1	,5		
Pull-out									
Characteristic resistance	$N_{Rk,p,C1}$	[kN]	2,0	4,0	12	9,0		$\geq N^0_{Rk,c}$	1)
Concrete cone failure		2		20					a
Effective anchorage depth	h _{ef}	[mm]	31	44	52	43	68	80	92
Spacing	S _{cr,N}	[mm]			30	31	N ef		2
Edge distance	C _{cr} ,N	[mm]				1,5	ih _{ef}		
Shear load	Version: B	II, B, SI	UTX	, SU, S	S, SK, LK, LI	P			
Steel failure without lever arn	n								
Characteristic resistance	$V_{Rk,s,C1}$	[kN]	4,7	5,5	8,5	13,5	15,3	21,0	22,4
Partial factor	γMs	[-]				1,	25		3
Concrete pry-out failure						74			
Pry-out factor	k ₈	[-]			1,0			2,0	
Concrete edge failure	Ŷ								
Effective length of anchor	$I_{f} = h_{ef}$	[mm]	31	44	52	43	68	80	92
Outside diameter of anchor	d_{nom}	[mm]	(6	8	1	0	12	14
Factor for filling of annular ga	ар								
with filling of annular gap (acc. to Annex B5, figure 5)	$lpha_{ extsf{gap}}$	[-]				1	,0		
without filling of annular gap (acc. to Annex B3)	α_{gap}	[-]				0	,5		

¹⁾ N⁰_{Rk,c} for concrete strength class C20/25, according to EN 1992-4:2018

Screwbolt TS	М
--------------	---

Characteristic resistance for seismic loading, performance category C1

Table C3: Characteristic values for **seismic loading**, performance category **C2**, with filling of annular gap, Screwbolt TSM zinc plated

Anchor size			TSM 8	TSM 10	TSM 12	TSM 14					
Nominal embedment depth	h _{nom}	[mm]	65	85	100	115					
Installation factor	γinst	[-]	1,0								
Tension load	Version: BI, B,	SUTX	SU, S, LK, LF	2							
Steel failure											
Characteristic resistance	N _{Rk,s.C2}	[kN]	27	45	67	94					
Partial factor	γMs	[-]		1	,5						
Pull-out						×.					
Characteristic resistance	$N_{\text{Rk,p,C2}}$	[kN]	2,4	5,4	7,1	10,5					
Concrete cone failure											
Effective anchorage depth	h _{ef}	[mm]	52	68	80	92					
Spacing	Scr,N	[mm]		31	Πef						
Edge distance	C _{cr} ,N	[mm]		1,5	Shef						
Shear load	Version: BI, B, S	SUTX,	SU, S, LK, LF)							
Steel failure without lever arm	1										
Characteristic resistance	$V_{\text{Rk,s.C2}}$	[kN]	9,9	18,5	31,6	40,7					
Partial factor	γMs	[-]		1,:	25						
Concrete pry-out failure											
Pry-out factor	k ₈	[-]	1,0		2,0						
Concrete edge failure		ti	<u>a</u>		Win in						
Effective length of anchor	$I_{\text{f}} = h_{\text{ef}}$	[mm]	52	68	80	92					
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14					
Factor for filling of annular ga	ар										
with filling of annular gap (acc. to Annex B5, figure 5)	$lpha_{ extsf{gap}}$	[-]		1.	,0						

Screwbolt TSM	
Performance Characteristic resistance for seismic loading, performance category C2 with filling of annular gap	Annex C3

Table C4: Characteristic values for **seismic loading**, performance category **C2**, <u>without</u> filling of annular gap, Screwbolt TSM zinc plated

Anchor size			TSM 8	TSM 10	TSM 12	TSM 14						
Nominal embedment depth	h _{nom}	[mm]	65	85	100	115						
Installation factor	γinst	[-]		1	,0							
Tension loads												
Steel failure	Version:	: BI, B, S	SUTX, SU, S	, LK, LP								
Characteristic resistance	N _{Rk,s.C2}	[kN]	27	45	67	94						
Partial factor	γMs	[-]		1	,5							
Pull-out	Version	: BI, B, S	SUTX, SU, S	S, LK, LP								
Characteristic resistance	N _{Rk,p,C2}	[kN]	2,4	5,4	7,1	10,5						
Steel failure	Version:	: SK	000									
Characteristic resistance	N _{Rk,s.C2}	[kN]	27	45	no performar	200 20000						
Partial factor	γMs	[-]	1	,5	no penoma	ice assessed						
Pull-out	Version:	: SK	20		_							
Characteristic resistance	$N_{\text{Rk,p,C2}}$	[kN]	2,4	5,4	no performar	nce assessed						
Concrete cone failure	Version	: BI, B, S	, SUTX, SU, S, SK, LK, LP									
Effective anchorage depth	hef	[mm]	52	68	80	92						
Spacing	S _{cr} ,N	[mm]		3	h _{ef}							
Edge distance	Ccr,N	[mm]		1,5	5 h _{ef}							
Shear loads												
Steel failure without lever arm	Version	ı: BI, B,	SUTX, SU,	S, SK, LK, LP		Г						
Characteristic resistance	V _{Rk,s.C2}	[kN]	10,3	21,9	24,4	23,3						
Partial factor	γMs	[-]		1,	25							
Steel failure without lever arm	Version:	: SK		I.	T							
Characteristic resistance	V _{Rk,s.C2}	[kN]	3,6	13,7	no performar	nce assessed						
Partial factor	γMs	[-]	1,	25	,							
Concrete pry-out failure	Version:	BI, B, S	SUTX, SU, S	S, SK, LK, LP								
Pry-out factor	k ₈	7070	1,0		2,0							
Concrete edge failure	Version	: BI, B, S	SUTX, SU, S	S, SK, LK, LP								
Effective length of anchor	$I_f = h_{ef}$	[mm]	52	68	80	92						
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14						
Factor for annular gap without filling of annular gap	$\alpha_{\sf gap}$	[-]		0	0,5							

Screwbolt TSM	
Performance Characteristic resistance for seismic loading, performance category C2 without filling of annular gap	Annex C4

Table C5: Characteristic values of resistance under fire exposure

Anchor size			TSM 6		1	TSM 8		TSM 10		TSM 12			TSM 14				
Nominal anchora	ge depth	h _{nom}	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Steel failure (tension and shear resistance																	
	R30			0	,9		2,4			4,4			7,3			10,3	1
Characteristic R60 resistance R90	R60	$N_{Rk,s,fi}$		0,8			1,7	1,7		3,3		5,8		8,2			
	V _{Rk,s,fi}	[kN]	0,6		1,1		2,3		4,2		5,9						
R120				0,4		0,7		1,7		3,4		4,8					
Steel failure with	lever arm	ı															
	R30			0	,7		2,4			5,9			12,3	0		20,4	
Characteristic	R60	N 40	[Nm]	0,6		1,8		4,5		9,7		15,9					
bending resistance	R90	- M ⁰ Rk,s,fi		0,5		1,2		3,0		7,0			11,6				
4	R120			0	,3		0,9			2,3	5		5,7			9,4	
Edge distance		Ccr,fi	[mm]							2	h _{ef}						
In case of fire atta	ack from m	ore than o	ne side	, the	minii	mum	edge	dista	ance	shall	be ≥	300	mm				
Spacing		S _{cr} ,fi	[mm]	4 h _{ef}													

The characteristic resistance for pull-out $N_{Rk,p,fi}$, concrete cone failure $N^0_{Rk,c,fi}$, concrete pry-out $V_{Rk,cp,fi}$ and concrete edge failure $V^0_{Rk,c,fi}$ shall be calculated according to EN 1992-4:2018.

The anchorage depth has to be increased for wet concrete by at least 30 mm compared to the given values

Screwbolt TSM

Performance

Characteristic values of resistance under fire exposure

Annex C5

Table C6: Displacements under static or quasi-static loads

Anch	Anchor size		TSM 6 TSM 8			TSM 10			TSM 12			TSM 14					
Nomir embe	nal dment depth	h _{nom}	[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
Tensi	on load																
T 0	Tension load	Ν	[kN]	0,95	1,9	2,4	4,3	5,7	4,3	7,9	9,6	5,7	9,4	12,3	7,6	12,0	15,1
Displacement	δηο	[mm]	0,3	0,6	0,6	0,7	0,8	0,6	0,5	0,9	0,9	0,5	1,0	0,5	0,8	0,7	
	Displacement	δn∞	[mm]	0,4	0,4	0,6	1,0	0,9	0,4	1,2	1,2	1,0	1,2	1,2	0,9	1,2	1,0
pe e	Tension load	N	[kN]	1,9	4,3	3,6	5,7	7,6	5,7	9,5	11,9	7,6	13,2	17,2	10,6	16,9	21,2
uncracked	Displacement	δηο	[mm]	0,4	0,6	0,7	0,9	0,5	0,7	1,1	1,0	1,0	1,1	1,2	0,9	1,2	0,8
5 8	Displacement	δN∞	[mm]	0,4	0,4	0,6	1,0	0,9	0,4	1,2	1,2	1,0	1,2	1,2	0,9	1,2	1,0
Shear load																	
	Shear load	٧	[kN]	3,	3		8,6			16,2			20,0			30,5	
3	Displacement	δνο	[mm]	1,5	55	2,7			2,7			4,0			3,1		
	Displacement –		[mm]	3,	1		4,1		4,3			6,0				4,7	

	VI	and the second
Screw	halt	TSM
SCIEW	DUIL	I JIVI

Displacements under static or quasi-static loads

Annex C6

Table C7: Displacements under **seismic loading**, performance category **C2**with filling of annular gap, Screwbolt TSM zinc plated

Anchor size			TSM 8	TSM 10	TSM 12	TSM 14
Nominal embedment depth	h _{nom}	[mm]	65	85	100	115
Tension load						
Version: BI, B, SUTX, SU, S, LK, LI	P					
Displacement DLS	$\delta_{\text{N,C2(DLS)}}$	[mm]	0,66	0,32	0,57	1,16
Displacement ULS	$\delta_{\text{N,C2(ULS)}}$	[mm]	1,74	1,36	2,36	4,39
Shear load						
Version: BI, B, SUTX, SU, S, LK, L	P (with cle	earance	hole)			
Displacement DLS	$\delta_{\text{V,C2(DLS)}}$	[mm]	1,68	2,91	1,88	2,42
Displacement ULS	δv,c2(ULS)	[mm]	5,19	6,72	5,37	9,27

Table C8: Displacements under **seismic loading**, performance category **C2**<u>without</u> filling of annular gap, Screwbolt TSM zinc plated

Anchor size			TSM 8	TSM 10	TSM 12	TSM 14	
Nominal embedment depth	h _{nom}	[mm]	65	85	100	115	
Tension load							
Version: BI, B, SUTX, SU, S, L	.K, LP	b 28		=5:		46	
Displacement DLS	δn,c2(DLS)	[mm]	0,66	0,32	0,57	1,16	
Displacement ULS	δn,c2(ULS)	[mm]	1,74	1,36	2,36	4,39	
Version: SK						*/-	
Displacement DLS	δn,c2DLS)	[mm]	0,66	0,32	no performance assessed		
Displacement ULS	δN,C2(ULS)	[mm]	1,74	1,36			
Shear load				6			
Version: BI, B, SUTX, SU, S, L	K, LP (with cle	earance	hole)				
Displacement DLS	$\delta v_{\text{,C2(DLS)}}$	[mm]	4,21	4,71	4,42	5,60	
Displacement ULS	δv,c2(ULS)	[mm]	7,13	8,83	6,95	12,63	
Version: SK (with clearance ho	e)	S 60	32	- C			
Displacement DLS	δv,c2(DLS)	[mm]	2,51	2,98			
Displacement ULS	δv,c2(ULS)	[mm]	7,76	6,25	no performance assesse		

SCREW		TCM
JULI HIM	m	

Performance

Displacements under seismic loading, performance category C2

Annex C7