

DECLARATION OF PERFORMANCE

DoP Nr.: Sikla-1.2-101_en

Unique identification code of product-type: Sikla Drop-in Anchor AN / AN ES

Intended use/es: Fastener for use in concrete for redundant

non-structural systems, see Annex B

Manufacturer: Sikla Holding GmbH

Kornstraße 4

4614 Marchtrenk - Österreich

System/s of AVCP: 2+

European Assessment Document: EAD 330747-00-0601

European Technical Assessment: ETA-10/0258, 26.11.2021

Technical Assessment Body: DIBt, Berlin

Notified body/ies: NB 2873 - Technische Universität Darmstadt

Declared performance/s:

Essential characteristics	Performance		
Safety in case of fire (BWR 2)			
Reaction to fire	Class A1		
Resistance to fire	Annex C5		
Safety in use (BWR 4)			
Characteristic resistance for all load directions and modes of failure for simplified design	Annex B3, C1-C4		
Durability	Annex B1		

The performance of the product identified above is in conformity with the set of declared performance/s.

This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Günter Brugger

Achim Münch (Head of IPRM)

Villingen-Schwenningen 12.10.2022

(Head of Management Systems)

The original of this declaration of performance was written in German. In the event of deviations in the translation, the German version shall be valid.

Specifications of intended use

Dyon in Anghov AN / AN EC		Anchorage depth h _{ef} ≥ 30 mm								
Drop-in Anchor AN / AN ES	M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x65			
Steel, zinc plated	✓									
Stainless steel A4 and high corrosion resistant steel HCR	·			-	✓					
Static and quasi-static loads	✓									
Fire exposure	✓									
Cracked and uncracked concrete	✓									
Solid concrete C20/25 to C50/60		✓								

Duran in Amehou ANIES	Anchorage depth h _{ef} = 25 mm						
Drop-in Anchor AN ES	M6x25 M8x25 M10x25 M1		M12x25				
Steel, zinc plated	·						
Stainless steel A4 and high corrosion resistant steel HCR	ь.						
Static and quasi-static loads	✓						
Fire exposure (solid concrete, C20/25 to C50/60)	✓						
Cracked and uncracked concrete	✓						
Solid concrete C12/15 to C50/60	✓						
Precast pre-stressed hollow core slabs C30/37 to C50/60	✓						

Use only for redundant, non-structural systems!

Base materials:

• Compacted, reinforced or unreinforced normal weight concrete (without fibers) acc. to EN 206:2013 + A1:2016

Use conditions:

- Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) or exposure to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used.)

SIKLA Drop-in Anchor AN / AN ES	
Intended use Specifications	Annex B1

Specifications of intended use

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position
 of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to
 supports, etc.)
- The strength class and the length of the fastening screw or threaded rod shall be defined by the designing engineer
- Anchorages are designed acc. to EN 1992-4:2018 (if necessary in connection with TR 055, Edition February 2018)

Installation:

- Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools
- Drill hole by hammer drilling or vacuum drilling

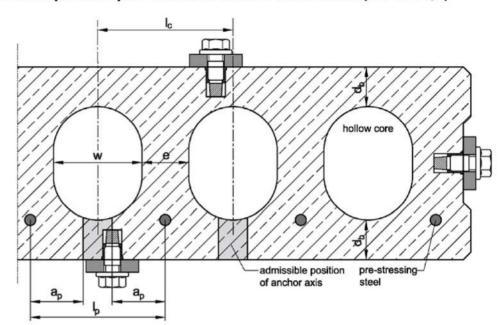
SIKLA Drop-in Anchor AN / AN ES	
Intended use Specifications	Annex B2

Table B1: Installation parameters for $h_{\text{ef}} \ge 30 \text{ mm}$

Anchor size			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x65
Depth of drill hole E	h ₀ =	[mm]	30	30	40	30	40	50	65
Depth of drill hole ES	h ₀ ≥	[mm]	30	30	40	30	40	50	65
Drill hole diameter	d ₀ =	[mm]	8	10	10	12	12	15	20
Cutting diameter of drill bit	d _{cut} ≤	[mm]	8,45	10,45	10,45	12,5	12,5	15,5	20,55
Maximum installation torque	T _{inst} ≤	[Nm]	4	8	8	15	15	35	60
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	9	9	12	12	14	18
Thread length	L _{th}	[mm]	13	13	20	12	15	18	23
Minimum screw-in depth	L _{sdmin}	[mm]	7	9	9	10	11	13	18
Steel, zinc plated	,		50. V		·	**	,		*
Minimum thickness of member	h _{min}	[mm]	100	100	100	120	120	130	160
Minimum spacing	Smin	[mm]	55	60	80	100	100	120	150
Minimum distance	Cmin	[mm]	95	95	95	115	135	165	200
Stainless steel A4, HCR						ya			
Minimum thickness of member	h _{min}	[mm]	100	100	100	-	130	140	160
Minimum spacing	Smin	[mm]	50	60	80	-	100	120	150
Minimum distance	Cmin	[mm]	80	95	95	-	135	165	200

Table B2: Installation parameters for h_{ef} = 25 mm

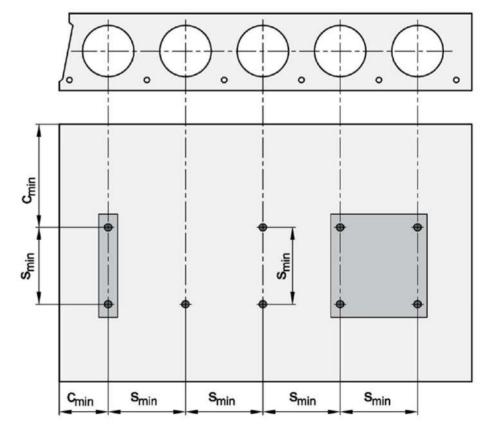
Anchor size			M6x25	M8x25	M10x25	M12x25
Depth of drill hole	h₀≥	[mm]	25	25	25	25
Drill hole diameter	d ₀ =	[mm]	8	10	12	15
Cutting diameter of drill bit	d _{cut} ≤	[mm]	8,45	10,45	12,5	15,5
Maximum installation torque	T _{inst} ≤	[Nm]	4	8	15	35
Diameter of clearance hole in the fixture	df ≤	[mm]	7	9	12	14
Thread length	L _{th}	[mm]	12	12	12	12
Minimum screw-in depth	L _{sdmin}	[mm]	6	8	10	12
Minimum thickness of member	h _{min,1}	[mm]	80			
Minimum spacing	Smin	[mm]	30	70	70	100
Minimum edge distance	Cmin	[mm]	60	100	100	130
Standard thickness of member	h _{min,2}	[mm]	100			
Minimum spacing	Smin	[mm]	30	50	60	100
Minimum edge distance	Cmin	[mm]	60	100	100	110
Installation in precast pre-stressed hollow core slabs C30/37 to C50/60						
Spacing	Smin	[mm]	200			
Edge distance	Cmin	[mm]		1;	50	


SIKLA Drop-in Anchor AN / AN ES	
Intended use Installation parameters	Annex B3

Admissible anchor positions in precast pre-stressed hollow core slabs (w / e ≤ 4,2)

Core distance: I_c ≥ 100 mm

Pre-stressing steel distance: $I_p \ge 100 \text{ mm}$


Distance between anchor position and pre-stressing steel: $a_p \ge 50 \text{ mm}$

Minimum spacing and edge distance of anchors and distance in precast pre-stressed hollow core slabs

Minimum edge distance c_{min} ≥ 150 mm

Minimum spacing s_{min} ≥ 200 mm

SIKLA Drop-in Anchor AN / AN ES

Intended use

Installation in precast pre-stressed hollow core slabs

Annex B4

Installation instructions for solid concrete slabs Drill hole perpendicular to concrete surface. 1 Using vacuum drill bit proceed with step 3. Blow out dust. Alternatively, vacuum clean down to the bottom of the 2 hole. Drive in anchor. 3 Drive in cone by using setting tool. 4 Shoulder of setting tool must fit on anchor rim. 5 **T**inst Turn in screw or threaded rod with nut, observe minimum screw-in depth (see Annex B3). 6 Apply installation torque Tinst.

SIKLA Drop-in Anchor AN / AN ES

Intended use

Installation instructions for solid concrete slabs

Annex B5

Inst	stallation instructions for precast pre-stressed hollow core slabs							
1		Search for the position of the reinforcement.						
2		Mark the position of the pre-stressing steel and search for the other position of the pre-stressing steel.						
3		Mark the positions of next pre-stressing steel.						
4	≥50mm ≥100mm	Drill hole while maintaining the required distances.						
5		Blow out dust. Alternatively vacuum clean down to the bottom of the hole.						
6		Drive in anchor.						
7		Drive in cone by using setting tool.						
8		Shoulder of setting tool must fit on anchor rim.						
9	T _{inst}	Turn in screw or threaded rod with nut, observe the minimum screw-in depth (see Annex B3). Apply installation torque T _{inst} .						
SIKI	A Drop-in Anchor	AN / AN ES						

SIKLA Drop-in Anchor AN / AN ES

Intended use

Installation instructions for precast pre-stressed hollow core slabs

Annex B6

Table C1: Characteristic resistance for hef ≥ 30 mm in solid concrete slabs

Anchor size	Anchor size			M8x30	M8x40	M10x30	M10x40	M12x50	M16x65
Installation factor	γinst	[-]				1,0		,	
Load in any direction		7.5	10	To-			v .	v .	
Characteristic resistance in concrete C20/25 to C50/60	F ⁰ Rk	[kN]	3	5	6	6	6	6	16
Partial factor	$\gamma_{M}^{1)}$	[-]	1,8	2,	16	2,1	2,16	1,8	1,8
Spacing	Scr	[mm]	130	180	210	230	170	170	400
Edge distance	Ccr	[mm]	65	90	105	115	85	85	200
Shear load with lever arm, stee	l zinc plat	ed							
Characteristic resistance (property class 4.6)	M ⁰ Rk,s	[Nm]	6,1	15	15	30	30	52	133
Partial factor	$\gamma_{\text{Ms}^{1)}}$	[-]				1,67			
Characteristic resistance (property class 4.8)	$M^0_{Rk,s}$	[Nm]	6,1	15	15	30	30	52	133
Partial factor	$\gamma_{\text{Ms}^{1)}}$	[-]	1,25			3			
Characteristic resistance (property class 5.6)	M ⁰ Rk,s	[Nm]	7,6	19	19	37	37	65	166
Partial factor	$\gamma_{\text{Ms}}^{1)}$	[-]	1,67						
Characteristic resistance (property class 5.8)	M^0 Rk,s	[Nm]	7,6	19	19	37	37	65	166
Partial factor	$\gamma_{\text{Ms}^{1)}}$	[-]				1,25	-		
Characteristic resistance (property class 8.8)	$M^0_{\text{Rk,s}}$	[Nm]	12	30	30	59	60	105	266
Partial factor	$\gamma_{\text{Ms}}^{1)}$	[-]				1,25			
Shear load with lever arm, stair	nless steel	A4 / H	CR						
Characteristic resistance (Property class 70)	M^0 Rk,s	[Nm]	11	26	26	_2)	52	92	233
Partial factor	$\gamma_{\text{Ms}}^{1)}$	[-]				1,56			
Characteristic resistance (Property class 80)	M ⁰ Rk,s	[Nm]	12	30	30	_2)	60	105	266
Partial factor	$\gamma_{\text{Ms}}^{1)}$	[-]				1,33			

¹⁾ in absence of other national regulations 2) Anchor version is not part of the ETA

SIKLA Drop-in Anchor AN / AN ES

Performance

Characteristic resistance for hef ≥ 30 mm in solid concrete

Annex C1

Table C2: Characteristic resistance for hef = 25 mm in solid concrete slabs

Anchor size			M6x25	M8x25	M10x25	M12x25	
Installation factor	γinst	[-]	1,0				
Load in any direction				ę.		y.	
Characteristic resistance in concrete C12/15 and C16/20	F ⁰ Rk	[kN]	2,5	2,5	3,5	3,5	
Characteristic resistance in concrete C20/25 to C50/60	F ⁰ Rk	[kN]	3,5	4,0	4,5	4,5	
Partial factor	$\gamma_M^{1)}$	[-]		1	,5		
Spacing	Scr	[mm]	75	75	75	75	
Edge distance	Ccr	[mm]	38	38	38	38	
Shear load with lever arm				.,			
Characteristic resistance (property class 4.6)	M ⁰ Rk,s	[Nm]	6,1	15	30	52	
Partial factor	$\gamma_{\text{Ms}}^{1)}$	[-]		1,	67		
Characteristic resistance (property class 4.8)	M^0 Rk,s	[Nm]	6,1	15	30	52	
Partial factor	$\gamma_{\text{Ms}}{}^{1)}$	[-]		1,	25	30	
Characteristic resistance (property class 5.6)	M^0 Rk,s	[Nm]	7,6	19	37	65	
Partial factor	$\gamma_{\text{Ms}}{}^{1)}$	[-]	1,67				
Characteristic resistance (property class 5.8)	$M^0_{\text{Rk,s}}$	[Nm]	7,6	19	37	65	
Partial factor	$\gamma_{\text{Ms}}{}^{1)}$	[-]	1,25			N.	
Characteristic resistance (property class 8.8)	M ⁰ Rk,s	[Nm]	12	30	60	105	
Partial factor	$\gamma_{\text{Ms}^{1)}}$	[-]		1,	25		

¹⁾ In absence of other national regulations

SIKLA	Drop-in	Anchor	AN /	AN	ES
-------	---------	---------------	------	----	----

Characteristic resistance for hef = 25 mm in solid concrete

Annex C2

Table C3: Characteristic resistance for hef = 25 mm in precast pre-stressed hollow core slabs

Anchor size	M6x25	M8x25	M10x25	M12x25			
Installation factor γ _{inst}			1,0				
Load in any direction							
Flange thickness	dь	[mm]	≥ 35 (30) ¹⁾				
Characteristic resistance in precast pre-stressed hollow core slabs C30/37 to C50/60	F ⁰ Rk	[kN]	3,5	4,0	4,5	4,5	
Partial factor	$\gamma_{\text{M}}^{2)}$	[-]	1,5				
Spacing	Scr	[mm]	200				
Edge distance	Ccr	[mm]		1	50		
Shear load with lever arm							
Characteristic resistance (property class 4.6)	M ⁰ Rk,s	[Nm]	6,1	15	30	52	
Partial factor	$\gamma_{\text{Ms}^{2)}}$	[-]	1,67				
Characteristic resistance (property class 4.8)	M ⁰ Rk,s	[Nm]	6,1	15	30	52	
Partial factor	$\gamma_{\text{Ms}^2)}$	[-]	1,25				
Characteristic resistance (property class 5.6)	M^0 _{Rk,s}	[Nm]	7,6	19	37	65	
Partial factor $\gamma_{Ms}^{(2)}$ [-]			1,67				
Characteristic resistance (property class 5.8)	M ⁰ Rk,s	[Nm]	7,6	19	37	65	
Partial factor	$\gamma_{\text{Ms}^{2)}}$	[-]	1,25				
Characteristic resistance (property class 8.8)		[Nm]	12	30	60	105	
Partial factor	[-]	1,25					

¹⁾ The anchor may be set in a flange thickness of 30 mm with identical characteristic loads, if the borehole cuts no hollow core ²⁾ In absence of other national regulations

SIKI A	Dron-in	Anchor	AN /	ΔΝ	F٩
SINLA	ווו-קטוט	AHCHOL	AIN /	AIA	E 3

Characteristic resistance for hef = 25 mm in precast pre-stressed hollow core slabs

Table C4: Characteristic values under fire exposure in solid concrete slabs C20/25 to C50/60 for $h_{ef} \ge 30 \text{ mm}$

Anchor size					M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x65
Fire resistance class Load in any direction											
. "	R 30			[kN]	0,4	0,6	0,6	0,9	0,9	1,5	3,1
Property class 4.6	R 60	Characteristic resistance	F ⁰ Rk,fi	[kN]	0,35	0,6	0,6	0,8	0,8	1,3	2,4
Prop	R 90		I HK,fi	[kN]	0,3	0,6	0,6	0,6	0,6	1,1	2,0
	R 120			[kN]	0,25	0,5	0,5	0,5	0,5	0,8	1,6
> 8	R 30			[kN]	0,4	0,9	1,1	0,9	1,5	1,5	4,0
Property class 4.8	R 60	Characteristic	F ⁰ Rk,fi	[kN]	0,35	0,9	0,9	0,9	1,5	1,5	4,0
Prop	R 90	resistance	г нк,п	[kN]	0,3	0,6	0,6	0,9	1,1	1,5	3,0
	R 120			[kN]	0,3	0,5	0,5	0,7	0,9	1,2	2,4
> 0	R 30	Characteristic resistance		[kN]	0,8	0,9	1,5	0,9	1,5	1,5	4,0
Property class ≥ 5.6	R 60		F ⁰ Rk,fi	[kN]	0,8	0,9	1,5	0,9	1,5	1,5	4,0
Proper class ≥	R 90		i nk,ii	[kN]	0,4	0,9	0,9	0,9	1,5	1,5	3,7
- 5	R 120			[kN]	0,3	0,5	0,5	0,7	1,0	1,2	2,4
	R 30	Characteristic resistance		[kN]	0,8	0,9	1,5	_1)	1,5	1,5	4,0
A4 /	R 60		F ⁰ Rk,fi	[kN]	0,8	0,9	1,5	_1)	1,5	1,5	4,0
HCR	R 90		i nk,ii	[kN]	0,4	0,9	0,9	_1)	1,5	1,5	3,7
	R 120			[kN]	0,3	0,5	0,5	_1)	1,0	1,2	2,4
		Partial factor	γM,fi	[-]	1,0						
Steel zi	nc plate	d				o .		2		21	
		Spacing	Scr,fi	[mm]	130	180	210	170	170	200	400
R 30 -	R 120	Edge distance	C _{cr} ,fi	[mm]	65	90	105	85	85	100	200
If the fire attack is from more than one side, the edge distance shall be ≥ 300 mm.											
Stainless steel A4, HCR											
		Spacing	S _{cr} ,fi	[mm]	130	180	210	_1)	170	200	400
R 30 -	R 120	Edge distance	C _{cr} ,fi	[mm]	65	90	105	_1)	85	100	200
		If the fire attack is from more than one side, the edge distance shall be \geq 300 mm.									

¹⁾ Anchor version is not part of the ETA

SIKLA Drop-in Anchor AN / AN	ES	S
------------------------------	----	---

Performance

Characteristic values under fire exposure for hef ≥ 30 mm

Annex C4

Table C5: Characteristic values under fire exposure in solid concrete slabs C20/25 to C50/60 for h_{ef} = 25 mm

Anchor size Fire resistance class Load in any direction				M6x25	M8x25	M10x25	M12x25	
ω R 30				[kN]	0,4	0,6	0,6	0,6
Property dass ≥ 4.6	R 60	Characteristic resistance	= 0	[kN]	0,35	0,6	0,6	0,6
Prop	R 90		F ⁰ Rk,fi	[kN]	0,3	0,6	0,6	0,6
- 5	R 120			[kN]	0,25	0,5	0,5	0,5
		Partial factor	γM,fi	[-]		1,	0	
		Spacing	Scr,fi	[mm]	100	100	100	100
R 30 – R 120		Edge distance	Ccr,fi	[mm]	50	50	50	50
		If the fire attack is from more than one side, the edge distance shall be \geq 300 mm.						

SIKLA Drop-in Anchor AN / AN ES	
Performance Characteristic values under fire exposure for hef = 25 mm	Annex C5